Average Frobenius Distribution of Elliptic Curves

نویسندگان

  • KEVIN JAMES
  • GANG YU
چکیده

The Sato-Tate conjecture asserts that given an elliptic curve without complex multiplication, the primes whose Frobenius elements have their trace in a given interval (2α √ p, 2β √ p) have density given by 2 π R β α √ 1− t2 dt. We prove that this conjecture is true on average in a more general setting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Efficient Algorithms for Arithmetic of Elliptic Curves Using Frobenius Map

In this paper, we present two efficient algorithms computing scalar multiplications of a point in an elliptic curve defined over a small finite field, the Frobenius map of which has small trace. Both methods use the identity which expresses multiplication-by-m maps by polynomials of Frobenius maps. Both are applicable for a large family of elliptic curves and more efficient than any other metho...

متن کامل

AVERAGE FROBENIUS DISTRIBUTION FOR INERTS IN Q(i)

Given an integer r, we consider the problem of enumerating the inert prime ideals p of Q(i) for which a given elliptic curve E has trace of Frobenius at p equal to r. We prove that on average the number of such prime ideals up to x is asymptotic to cr log log x where cr is an explicit constant computed in terms of an Euler product. This result is in accordance with the standard heuristics. This...

متن کامل

Average Frobenius Distributions for Elliptic Curves with 3-torsion

In this paper, we examine the Lang-Trotter conjecture for elliptic curves which possess rational 3-torsion points. We prove that if one averages over all such elliptic curves then one obtains an asymptotic similar to the one predicted by Lang and Trotter.

متن کامل

Average Frobenius Distribution for Elliptic Curves Defined over Finite Galois Extensions of the Rationals

Let K be a fixed number field, assumed to be Galois over Q. Let r and f be fixed integers with f positive. Given an elliptic curve E, defined over K, we consider the problem of counting the number of degree f prime ideals of K with trace of Frobenius equal to r. Except in the case f = 2, we show that “on average,” the number of such prime ideals with norm less than or equal to x satisfies an as...

متن کامل

Average Frobenius distribution for elliptic curves defined over finite

Let K be a fixed number field, assumed to be Galois over Q. Let r and f be fixed integers with f positive. Given an elliptic curve E , defined over K , we consider the problem of counting the number of degree f prime ideals of K with trace of Frobenius equal to r . Except in the case f = 2, we show that ‘on average,’ the number of such prime ideals with norm less than or equal to x satisfies an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005